Respiratory Health Impacts of Airborne Particles

Kent E. Pinkerton, Ph.D.

University of California at Davis

Annual Average PM2.5 Concentrations

We Know PM Air Pollution Causes Health Effects

- Epidemiology Studies
- Statistical Tools Look at Human Populations
- Mortality and Illness Track PM Levels
- High Degree of <u>Consistency</u> and <u>Coherence</u>
 Among Studies
- Effects are seen Worldwide

What We Still Need to Understand Regarding the Health Effects of PM Air Pollution

- Which Characteristics Are Most Important?
 - Particle Size
 - Particle Composition
 - Particle Number
- What Cellular Mechanisms are involved?
 - Allergic response
 - Immune response
 - Inflammation
 - Injury and repair

Biological Endpoints

- Cell Permeability (Injury)
- Cell Proliferation (Repair)
- Oxidative Stress
- Histopathology
- Injury Location
- Immunohistochemistry
- Immune Cell Responses

- Airway Inflammation
- Cellular Function
- Pulmonary Function
- Particle Clearance
- Asthmatic Symptoms
- Allergic Response (cellular)
- Cardiovascular Effects

PM Aerosol

LM

SEM

Airway Microdissection

Epithelial cell labeling of airways

Epithelial cell labeling of airway bifurcations

Interstitial cell labeling of airway bifurcations

Epithelial labeling of terminal bronchioles

Cell labeling of the proximal alveolar region

Epithelial cell labeling of respiratory bronchioles in Rhesus monkeys

(PM = 150 μ g/m ³ Nitrate + 100 μ g/m ³ Carbon)

Studies of Concentrated Ambient Particles of the California Central Valley

Concentrated Ambient ParticlesFall 2000, Fresno, CA

Date	Number/cc	Mass/m ³
Oct 17 - Oct 19	120,000	847
Oct 24 - Oct 26	120,000	260
Oct 31 - Nov 2	110,000	369

Chemical Composition of Fine Aerosol in Fresno Oct 17-19, 2000 (Total Mass = 847 μg/m³)

Chemical Composition of Fine Aerosol in Fresno Oct 31- Nov 2, 2000 (Total Mass = 369 µg/m³)

Fresno PM Study: Cell Permeability for Bronchoalveolar Lavage Fall, 2000

Non-Viable Cells in BAL from SD Rats Exposed to Fine or Coarse Aerosol in Fresno

Neutrophils in BAL from SD Rats Exposed to Fine or Coarse Aerosol in Fresno

Membranous Bronchioles

Respiratory Bronchioles

Lung

*P<0.01 compared to soot #P<0.05. compared to iron

***p<0.01 when compared with soot + iron.

Terminal Bronchioles

Lung Parenchyma

Proximal Alveolar Region

Conclusions

- 1. Ambient fine and coarse particles can be used to study health effects.
- 2. Respiratory changes have been observed following exposure to concentrated ambient particles in the Central Valley of California.
- 3. The immediate adverse effects of particles are site-specific in the lungs of healthy adult rats.
- 4. Ultrafine soot and metal particles such as iron have an adverse synergistic effect on the lungs.
- 5. Combustion particles have subtle, but significant effects on lung growth during early life.

Acknowledgements

UC Davis

Kevin Smith

Charles Plopper

Julian Recendez

Marc Schenker

Brian Tarkington

Yamei Zhou

CSU Fresno

David Grubbs

UC Merced

Valerie Leppert

USC

Seongheon Kim

Constantinos Sioutas